Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
R. Krishna, ${ }^{\text {a }}$ * P. G. Aravindan, ${ }^{\text {a }}$
M. Yogavel, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$
S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ H.-K. Fun, ${ }^{\text {c }}$ M. Shanmuga Sundaram ${ }^{d}$ and R. Raghunathan ${ }^{d}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ B3121 Medical Centre North, Department of Medicine-Nephrology,
Nashville, USA, ${ }^{\text {c } X \text {-ray Crystallographic Unit, }}$ Department of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{d}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.065$
$w R$ factor $=0.167$
Data-to-parameter ratio $=25.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

6a,14a-cis-6,6a,7,14a-Tetrahydrochromeno[4', $\left.3^{\prime}: 3,4\right]$ pyrano[3,2-c]coumarin

The title compound, $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$, crystallizes with two molecules in the asymmetric unit. The dihydropyran rings adopt a halfchair conformation or a conformation intermediate between a sofa and half-chair. The inversion-related type A and B molecules and vice versa are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming an infinite chain along the a axis. The molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Coumarin derivatives can undergo photocycloaddition with themselves (Song et al., 1971). Coumarin dyes are widely used in lasers owing to their tunability (Masilamani et al., 1986; Elnagdi et al., 1997). The coumarin ring system is also present in a number of natural products (Cisowski, 1983, 1984), which are found to possess antimicrobial (Zaha \& Hazem, 2002), antioxidant (Wei et al., 1999; Sugioka et al., 1997), anticoagulation (Cole et al., 1988) and antiplatelet (Roma et al., 2003) activities. 4,7-Disubstituted coumarins give rise to interesting crystal structures in terms of their photochemical reactivity (Gnanaguru et al., 1985). The X-ray crystal structure analysis of the title compound, (I), was carried out as part of our studies of coumarin derivatives.

(I)

The title molecule, (I), comprises two dihydropyran rings (C and D), one (C) fused to a coumarin moiety (rings A and B) and the other (D) fused to a benzene ring (E) (Fig. 1). There are two crystallographically independent molecules in the asymmetric unit. In both molecules, the $\mathrm{O} 1-\mathrm{C} 2$ and $\mathrm{O} 1-\mathrm{C} 6$ bonds are nearly equal in length, but slightly shorter than previously reported values (Krishna et al., 2003). The $\mathrm{C} 2=\mathrm{O} 2$, $\mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 3=\mathrm{C} 4$ and $\mathrm{C} 5-\mathrm{C} 6$ bond lengths and the endocyclic angles of the pyrone ring (B) agree well with those reported in related structures (Ruggiero et al., 1989; Chinnakali et al., 1992). The coumarin moiety is planar except for atom C2, which is displaced by -0.097 (2) and 0.040 (2) \AA in molecules A and B, respectively. Atom O 2 is displaced from the coumarin plane by -0.289 (1) and 0.136 (1) \AA for molecules A and B, respectively. The dihedral angles between the aromatic ring (A) and the pyrone ring (B) are 3.2 (1) and $1.4(1)^{\circ}$ for molecules A and B, respectively. The dihedral angles between the dihydropyran rings (C and D) are 66.5 (1) and $64.8(1)^{\circ}$, respectively. In both molecules, the dihydropyran ring C

Received 8 July 2003
Accepted 13 August 2003
Online 30 August 2003

Figure 1
The molecular structure of the title compound, showing 35% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
adopts a conformation intermediate between a sofa and a halfchair, with asymmetry parameters (Nardelli, 1983) of $\Delta C_{S}(\mathrm{C} 4 A)=0.059(1)$ and $\Delta C_{2}(\mathrm{C} 4 A-\mathrm{C} 3 A)=0.063$ (1) for molecule A, and $\Delta C_{S}(\mathrm{C} 4 B)=0.065$ (1) and $\Delta C_{2}(\mathrm{C} 4 B-\mathrm{C} 3 B)$ $=0.061$ (1) for molecule B. Dihydropyran ring D has a halfchair conformation in molecule $A\left[\Delta C_{2}(\mathrm{C} 15 A-\mathrm{C} 14 A)=\right.$ 0.015 (1)] and is intermediate between a sofa and a half-chair in molecule $B\left[\Delta C_{S}(\mathrm{C} 15 B)=0.059(1)\right.$ and $\Delta C_{2}(\mathrm{C} 15 B-$ $C 14 B)=0.027(1)]$.

Carbonyl atom O2 of the symmetry related molecule A at $\left(1-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ and $\left(2-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ acts as a bifurcated acceptor from the H atoms on C 7 and C 16 of molecule B and carbonyl atom O 2 of the symmetry-related molecule B at $\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ ha an intermolecular interaction with C16 of molecule A of the donor atom. The molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Experimental

To a refluxing solution of 3-(2-alloxybenzylidine)chroman-2,4-dione $(0.31 \mathrm{~g}, 1 \mathrm{mmol})$ in nitromethane $(20 \mathrm{ml})$ was added lithium per-

Figure 2
The crystal packing in the title compound. Only the H atoms involved in hydrogen bonding (dotted lines) have been included.
chlorolate ($0.11 \mathrm{~g}, 1 \mathrm{mmol}$). After 12 h , work-up and flash-column chromatography, the cycloadduct was obtained in 38% yield. The crystals were grown from a combination of methanol/chloroform by slow evaporation.

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$
$M_{r}=306.30$
Monoclinic, $P 2_{1 / c}$ c
$a=12.2252$ (1) A
$b=16.3351$ (3) \AA
$c=15.3425$ (3) \AA
$\beta=109.207(1)^{\circ}$
$V=2893.35$ (8) \AA^{3}
$Z=8$
$D_{x}=1.406 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 9616
reflections
$\theta=2.8-33.2^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.44 \times 0.40 \times 0.22 \mathrm{~mm}$

Data collection

Siemens SMART 1K CCD areadetector diffractometer

ω scans

Absorption correction: none 25479 measured reflections 10531 independent reflections

6116 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=33.2^{\circ}$
$h=-18 \rightarrow 9$
$k=-24 \rightarrow 24$
$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.167$
$S=1.07$
10531 reflections
415 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0539 P)^{2}\right. \\
\quad+0.8287 P] \\
\text { where } P=\left(F_{o}^{2}+2 \mathrm{~F}_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{2} 0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{C} 6 A$	$1.375(2)$	$\mathrm{O} 1 B-\mathrm{C} 6 B$	$1.374(2)$
$\mathrm{O} 1 A-\mathrm{C} 2 A$	$1.377(2)$	$\mathrm{O} 1 B-\mathrm{C} 2 B$	$1.382(2)$
$\mathrm{O} 2 A-\mathrm{C} 2 A$	$1.214(2)$	$\mathrm{O} 2 B-\mathrm{C} 2 B$	$1.211(2)$
$\mathrm{O} 3 A-\mathrm{C} 4 A$	$1.344(2)$	$\mathrm{O} 3 B-\mathrm{C} 4 B$	$1.344(2)$
$\mathrm{O} 3 A-\mathrm{C} 11 A$	$1.441(2)$	$\mathrm{O} 3 B-\mathrm{C} 11 B$	$1.443(2)$
$\mathrm{O} 4 A-\mathrm{C} 15 A$	$1.371(2)$	$\mathrm{O} 4 B-\mathrm{C} 15 B$	$1.370(2)$
$\mathrm{O} 4 A-\mathrm{C} 16 A$	$1.435(2)$	$\mathrm{O} 4 B-\mathrm{C} 16 B$	$1.430(2)$
$\mathrm{C} 2 A-\mathrm{C} 3 A$	$1.443(2)$	$\mathrm{C} 2 B-\mathrm{C} 3 B$	$1.444(2)$
$\mathrm{C} 3 A-\mathrm{C} 4 A$	$1.357(2)$	$\mathrm{C} 3 B-\mathrm{C} 4 B$	$1.360(2)$
$\mathrm{C} 3 A-\mathrm{C} 13 A$	$1.512(2)$	$\mathrm{C} 3 B-\mathrm{C} 13 B$	$1.511(2)$
$\mathrm{C} 4 A-\mathrm{C} 5 A$	$1.445(2)$	$\mathrm{C} 4 B-\mathrm{C} 5 B$	$1.448(2)$
$\mathrm{C} 5 A-\mathrm{C} 6 A$	$1.392(2)$	$\mathrm{C} 5 B-\mathrm{C} 6 B$	$1.390(2)$
$\mathrm{C} 11 A-\mathrm{C} 12 A$	$1.516(2)$	$\mathrm{C} 11 B-\mathrm{C} 12 B$	$1.513(2)$
$\mathrm{C} 12 A-\mathrm{C} 16 A$	$1.508(2)$	$\mathrm{C} 12 B-\mathrm{C} 16 B$	$1.510(2)$
$\mathrm{C} 12 A-\mathrm{C} 13 A$	$1.534(2)$	$\mathrm{C} 12 B-\mathrm{C} 13 B$	$1.532(2)$
$\mathrm{C} 13 A-\mathrm{C} 14 A$	$1.529(2)$	$\mathrm{C} 13 B-\mathrm{C} 14 B$	$1.530(2)$
$\mathrm{C} 4 A-\mathrm{O} 1 A-\mathrm{C} 2 A$	$121.3(1)$	$\mathrm{O} 4 A-\mathrm{C} 15 A-\mathrm{C} 14 A$	$123.8(1)$
$\mathrm{C} 4 A-\mathrm{O} 3 A-\mathrm{C} 11 A$	$117.1(1)$	$\mathrm{C} 6 B-\mathrm{O} 1 B-\mathrm{C} 2 B$	$121.5(1)$
$\mathrm{C} 15 A-\mathrm{O} 4 A-\mathrm{C} 16 A$	$116.5(1)$	$\mathrm{C} 4 B-\mathrm{O} 3 B-\mathrm{C} 11 B$	$116.7(1)$
$\mathrm{O} 2 A-\mathrm{C} 2 A-\mathrm{O} 1 A$	$116.2(1)$	$\mathrm{C} 15 B-\mathrm{O} 4 B-\mathrm{C} 16 B$	$116.9(1)$
$\mathrm{O} 2 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$125.3(2)$	$\mathrm{O} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	$118.6(1)$
$\mathrm{O} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$118.6(1)$	$\mathrm{C} 4 B-\mathrm{C} 3 B-\mathrm{C} 2 B$	$119.3(2)$
$\mathrm{C} 4 A-\mathrm{C} 3 A-\mathrm{C} 2 A$	$119.1(1)$	$\mathrm{C} 4 B-\mathrm{C} 3 B-\mathrm{C} 13 B$	$122.0(1)$
$\mathrm{C} 4 A-\mathrm{C} 3 A-\mathrm{C} 13 A$	$121.8(1)$	$\mathrm{O} 3 B-\mathrm{C} 4 B-\mathrm{C} 3 B$	$124.5(1)$
$\mathrm{O} 3 A-\mathrm{C} 4 A-\mathrm{C} 3 A$	$124.7(1)$	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	$121.7(1)$
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	$121.6(1)$	$\mathrm{C} 6 B-\mathrm{C} 5 B-\mathrm{C} 4 B$	$117.1(2)$
$\mathrm{C} 6 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	$117.1(2)$	$\mathrm{O} 1 B-\mathrm{C} 6 B-\mathrm{C} 5 B$	$121.7(2)$
$\mathrm{O} 1 A-\mathrm{C} 6 A-\mathrm{C} 5 A$	$121.5(1)$	$\mathrm{O} 3 B-\mathrm{C} 11 B-\mathrm{C} 12 B$	$112.5(1)$
$\mathrm{O} 3 A-\mathrm{C} 11 A-\mathrm{C} 12 A$	$112.8(1)$	$\mathrm{O} 4 B-\mathrm{C} 15 B-\mathrm{C} 14 B$	$123.6(2)$
$\mathrm{C} 16 A-\mathrm{C} 12 A-\mathrm{C} 13 A$	$110.5(1)$	$\mathrm{O} 4 B-\mathrm{C} 16 B-\mathrm{C} 12 B$	$112.1(1)$
$\mathrm{C} 13 A-\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	$-176.2(1)$	$\mathrm{C} 13 B-\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	$175.7(1)$
$\mathrm{C} 10 A-\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{O} 1 A$	$-177.5(2)$	$\mathrm{C} 10 B-\mathrm{C} 5 B-\mathrm{C} 6 B-\mathrm{O} 1 B$	$179.1(2)$
$\mathrm{C} 20 A-\mathrm{C} 14 A-\mathrm{C} 15 A-\mathrm{O} 4 A$	$179.2(2)$	$\mathrm{C} 20 B-\mathrm{C} 14 B-\mathrm{C} 15 B-\mathrm{O} 4 B-179.0(2)$	

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 20 B-\mathrm{H} 20 B \cdots \mathrm{O} 2 B$	0.93	2.55	$3.262(2)$	134
$\mathrm{C} 7 B-\mathrm{H} 7 B \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.93	2.46	$3.357(2)$	163
$\mathrm{C} 16 A-\mathrm{H} 16 B \cdots \mathrm{O} 2 B^{\mathrm{ii}}$	0.97	2.38	$3.265(2)$	152
$\mathrm{C} 16 B-\mathrm{H} 16 C \cdots \mathrm{O} 2 A^{\text {iii }}$	0.97	2.50	$3.336(2)$	145
Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (iii) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$.				

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$. They were allowed to ride on their parent atoms with the isotropic displacement paramater $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST) and the University Grants Commission (UGC), Government of India, is gratefully acknowledged.

References

Chinnakali, K., Sivakumar, K., Natarajan, S. \& Mathews, I. I. (1992). Acta Cryst. C48, 386-387.
Cisowski, W. (1983). Herba Pol. 29, 301-318.
Cisowski, W. (1984). Herba Pol. 29, 71-79.
Cole, M. S., Minifee, P. K. \& Wolma, F. J. (1988). Surgery, 103, 271-277.
Elnagdi, M. H., Abdallah, S. O., Ghoneim, K. M., Ebied, E. M. \& Kassab, K. N. (1997). J. Chem. Res. (S), pp. 044-045.

Gnanaguru, K., Ramasubbu, N., Venkatesan, K. \& Ramamoorthy, V. (1985). J. Org. Chem. 50, 2337-2346.

Krishna, K., Selvanayagam, S., Yogavel, M., Velmurugan, D. \& Manikandan, V. (2003). Acta Cryst. E59, o667-o669.

Masilamani, V., Chandrasekar, V., Sivaram, B. M., Sivasankar, B. \& Natarajan, S. (1986). Opt. Commun. 59, 203-207.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Roma, G., Braccio, M. D., Carreri, A., Grossi, G., Leonicini, G., Rignorello, M. G. \& Carotti, A. (2003). Bioorg. Med. Chem. 11, 123-222.

Ruggiero, G., Valente, E. J. \& Eggleston, D. R. (1989). Acta Cryst. C45, 13691372.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray instruments Inc., Madison, Wisconsin, USA.
Song, P. S., Harter, L. M., Moore, T. A. \& Hemdon, W. C. (1971). Photochem. Photobiol. 14, 521-530.
Sugioka, T., Yoneda, E., Onitsuka, K., Zhang, S.-W. \& Takahasi, S. (1997). Tetrahedron Lett. 38, 4989-4992.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Wei, Y., Liu, Z.-Q. \& Liu, Z.-L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 969974.

Zaha, A. A. \& Hazem, A. (2002). New Microbiol. 25, 213-222.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

